STATUS REPORT ON THE LACARA EXPERIMENT

Sergey V. Shchelkunov, T.C. Marshall Department of Applied Physics, Columbia University

&

J.L. Hirshfield, Changbiao Wang, M.A. LaPointe Physics Department, Yale University and Omega-P, Inc.

The authors acknowledge:

- Help from the ATF staff.
- The financial support of the DoE.

References:

- 1) J.L. Hirshfield, C. Wang, Physics Rev. E 61, 7252 (2000)
- 2) T. C. Marshall, C. Wang, J.L. Hirshfield, Physics Rev. Vol. 4. 121301, (2001)
- 3) S.V. Shchelkunov, T.C. Marshall, J.L. Hirshfield, C-B. Wang, and M.A. LaPointe, p. 349, AIP Conference Proceedings 647: Advanced Accelerator Concepts Tenth Workshop, Editors C.E. Clayton and P. Muggli, (2002)

LACARA - Laser Cyclotron Auto-Resonance Accelerator

- * Vacuum accelerator of electrons
- * Electrons gain energy by a nearly-gyroresonant interaction.
- * The input electron beam is not pre-bunched ($\sigma \approx 100 \mu m$, emittance $\approx 0.015 mm$ -mrad) and <u>all electrons receive</u> the energy increment
- * A 50MeV bunch should gain another 25MeV in <1m using ~0.8TW CO₂ laser power

useful features:

- * The utilization of high laser power in the form of a Gaussian beam
- * Acceleration to a high energy over a short distance
- * Possibility to make f-sec bunches

LACARA Schematic.

requires:

- * Gaussian laser beam ($\lambda = 10.6 \mu m$) with a Rayleigh length ≈ 50 60cm
- * ~6T solenoidal field (provided by a "dry" SC magnet)

the PRINCIPLE of RESONANCE between the electrons and the parallel-moving light pulse

- * LACARA uses a TW, circularly-polarized <u>Gaussian-mode</u> Carbon Dioxide laser and a solenoidal magnetic field for acceleration.
- * Laser photons will travel in the same direction as the electrons, and therefore the Doppler-shifted laser frequency in the electron rest frame must be $\gamma\omega$ ($1-n\beta_z$) = $eB/m=\Omega$ o for gyro-resonant interaction
- * During the motion of the electron, an increase of γ and an increase of β_z is compatible with a fixed laser frequency ω , because the behavior of the effective index of refraction $n = [c/\omega] [k_z + k_r (v_r/v_z)]$ upon position will determine the details of the energy gain. Since both (1 n) and $(1 \beta z)$ are <<1, it follows that $\Omega o / \omega \sim 1/2\gamma$.
- * An almost constant solenoidal field is used; this is possible because the resonance condition above is relaxed since the entire path of the bunch is only a few gyroperiods in length.

 $\sigma \approx 101 \text{ μm}, \ \epsilon \approx 0.015 \text{ mm-mrad}$ $\sigma \approx 30 \text{ μm}, \ \epsilon \approx 0.0015 \text{ mm-mrad}$

Laser	Emittance,	Energy spread,	Emittance,	Energy spread,
Power,	final, [mm-	final, [%]	final, [mm-	final, [%]
[GW]	mrad]		mrad]	
30	.139	6.6	.033	2.0
800	.269	18	.092	2.7

fsec bunch production

NOTE: not to scale

A "snapshot" of the transverse particle positions on a plane, following acceleration. The laser power ≈ 800 GW; the electron beam at the matching point is round with the waist σ_{x} , $\sigma_{y} = 28$ μm , and the non-normalized emittance is .0015 mm-mrad.

Values of magnetic field, if the field inside is 6T (confirmed by measurements in the high bay)

NOTE:

LACARA may operate at 4 T, and thus, all values could be 1.5 times less

Electron Transport	Already assembled		
Laser Transport	Feb-March	of 2006	
Preliminary Runs	April-July	of 2006	
New spectrometer	August-December	of 2006	